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The industrial process considered is production of oil through a horizontal well perforated 
into an oil-zone which is bounded below by water and bounded above by gas. This process is 
modelled by a two-dimensional, incompressible, porous-medium flow into a point sink. The 
interfluid boundaries are then moving boundaries. The conditions at each moving boundary 
are expressed, with appropriate assumptions, as equations between the fluid potential and 
the vertical displacement of the boundary. There is one static and one dynamic condition at 
each boundary. Boundary-fitted orthogonal coordinates are then introduced. The Laplace 
equation for the vertical displacement and the Poisson equation for the velocity potential, 
together with the static boundary conditions, can then be solved analytically, in terms of the 
vertical displacement at each boundary, with time as a parameter. The vertical displacement 
at each boundary must be calculated at each time-step by solving the equations expressing the 
dynamic boundary conditions. These are coupled, non-linear integro-differential equations. 
The solution is expressed as an infinite trigonometric series, whose coefficients are determined 
as the solution of an infinite system of ordinary differential equations. Convergence 
acceleration is applied to this series and hence only the first few terms need to be calcutated. 
0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The problem considered in this paper has its background in the petroleum 
industry, specifically in the exploitation of thin but areally extensive oil-zones 
sandwiched between a water-zone at the bottom and a gas-zone at the top. Because 
of the small thickness of the oil-zone it is advantageous to bore a long well horizon- 
tally into the porous medium of the oil-zone. 

The production of oil in such a configuration raises a number of questions, the 
most important ones being the following. First, what is the time (called critical 
time) at which one or both of the adjacent fluids break through at the well. Second, 
how to position the well-axis in the oil zone so that the critical time is maximum, 
for a given rate of production and given fluid properties. And third, how does 
pressure in the immediate vicinity of the well vary with time. Knowledge of a 
theoretical pressure versus time curve leads, by comparison with the measured 
pressure and with the use of reservoir engineering methods, to the determination of 
reservoir properties. 
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The model which has been set up to answer these question is now briefly 
described. In a vertical plane I’, perpendicular to the axis of the well and away from 
its ends, one has the two-dimensional flow of three immiscible fluids, identified as g 
(gas), o (oil), and w (water), with intrinsic masses p satisfying 

Pg<Po<Pw 

Neglecting forces due to capillary pressure, the three liquids are at all times 
separated by well-defined surfaces intersecting V along two lines as shown in Fig. 1. 
Assuming that the well has zero radius, its intersection with V is a point. One then 
obtains in V two-dimensional flow with a point sink and two moving boundaries 
(Fig. 1). Both boundaries move inwards when fluid o is drawn into the sink and one 
has a phenomenon analogous to “coning” [l], also called the “Muskat problem” 
[2]. It is expected that, as shown by Muskat [l], an unstable situation will occur 
before any of the boundaries has reached the sink. It has been shown in calculations 
of related problems [3-53 that one should expect a breakdown of the solution to 
occur at a time (the critical time) when a cusp appears at a boundary. 

Further assumptions will be introduced in the next section, so that the model 
which is set up concentrates on the description of flow for fluid o as a two-dimen- 
sional moving boundary problem. Similar problems, arising in particular in 
Hele-Shaw flow [3, 61 have been solved by conformal mapping. This consists in 
mapping the physical flow into the complex plane in such a way that the moving 
boundary is mapped onto the unit circle, so that the complex potential (the real 
part of which is the pressure) becomes easy to find in the mapped plane. The 
pressure for the physical flow is then obtained in terms of the mapping function 

FIG. 1. The x-axis is horizontal, the y-axis vertical. The well is horizontal, with axis perpendicular to 
the x-y plane and cutting the x-y plane at the origin. The fluids are originally separated by two parallel 
planes and, later, by curved surfaces. Note that the distance between well-axis and upper initial interface 
is the unit of length. 
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which is itself calculated by using complex variable theory [3-61. The applicability 
of the method just outlined depends on the pressure having at all times a constant 
value on the moving boundary. A theorem in complex analysis [7] then guarantees 
that the complex potential in the mapped plane has that same constant value on 
the unit circle. If the pressure is not constant on the moving boundary then the 
complex potential on the unit circle of the mapped plane depends on the mapping 
function and the methods established for Hele-Shaw flow are then not directly 
applicable. 

The model which is presented in the next section is such that the pressure at the 
moving boundaries depends on the displacement of the boundaries so that 
not of the Hele-Shaw type. The method which is presented for solving this 
boundary problem is based on the use of boundary-fitted orthogonal coordinates 
[S]. It will be shown that the moving-boundary problem is transformed into two 
classical boundary value problems (one for the pressure and one to determine the 
new coordinates) and one initial value problem. The two boundary value proble 
admit closed-form solutions in terms of the vertical displacements of the boun- 
daries, which are in turn determined by the solution to the initial value problem. As 
will be shown, this initial value problem is formulated as a system of two non-linear 
integro-differential equations. Its solution will be given by two methods, one of 
which, to our knowledge, has not been previously presented. It consists of a first 
step whereby the two integro-differential equations are transformed into an infinite 
set of ordinary, first-order differential equations [9] and of a second step which 
solves the question of closure by using acceleration of convergence. This method is 
valid for small rates of fluid withdrawal. The other method of solution uses iteration 
and is valid for large rates. The regions of validity overlap so that one is able to 
answer the questions at the beginning of this section. 

2. THE MODEL: FLOW EQUATION AND BOUNDARY CQNDITIONS 

2.1. Main Assumptions 

The equation describing flow in a porous medium is a diffusion equation for the 
velocity potential 4, with a right-hand side accounting for possible sources or sinks. 
It will be assumed that compressibility is zero so that the time-derivative drops out 
and one obtains, for fluid o, 

(iq3x2 + d2/Q) q5 = 27cQ 6(x) 6(y), (1) 

where 6(x) is Dirac’s delta-function and Q is the constant rate of withdrawal by the 
sink. Note that the sink is placed at the origin of the coordinate axes (Fig. I) and 
that the distance from the sink to the initial upper interface is taken as the unit of 
length. The distance from the sink to the initial lower interface is denoted by p. All 
quantities in (1) are dimensionless. Formulas relating dimensionless and physical 
quantities are given in the Appendix. 
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An essential assumption is now introduced concerning fluids g and w, namely 
that they are, at each time, in static equilibrium. In other words they participate in 
the movement of the interface boundaries by expanding when pressure falls, but 
their flow is neglected. The approximation implied by this assumption is expected 
to be good because fluid velocities in porous media are usually very low at a 
distance from sources and sinks. We shall return to this implication later on. 

The boundary conditions on 4 are of two types: static and dynamic. 

2.2. Static Boundary Conditions 

This set of boundary conditions expresses that the pressure of fluid o is equal to 
the static pressure in fluid g at the upper boundary and to the static pressure in 
fluid w at the lower boundary. If (x,, yu) and (x~, yL) are two points, at the upper 
and lower boundary, respectively, then it is implied by hydrostatics that 

4(x,, Yd = -$(YI, + PI> (2) 

~(x”~Y”)=Y,-L (3) 

where 

*=Pw--PO 
p,-p,’ 

(4) 

2.3. Dynamic Boundary Conditions . 

This second set of boundary conditions expresses the velocity of the fluid at a 
point of a boundary in terms of the velocity potential at that point. These con- 
ditions contribute to the definition of the boundary-fitted orthogonal coordinates to 
be introduced in Section 3, so that we transfer their mathematical formulation to 
that section, 

3. BOUNDARY-FITTED NORMAL COORDINATES 

It will now be shown that the moving-boundary problem described above, can 
be reformulated as a classical boundary value problem by the introduction of 
boundary-fitted normal coordinates, as described by Ryskin and Lea1 [S]. 

Consider a new set of coordinates, (5, r]). The r = CO curves with parametric 
equations x = x(tO, q), y = y(tO, q), and the q = qO curves with parametric equations 
x = ~(5, qO), y = y(& q,,) are orthogonal if the functions x(& q), y(& q) satisfy 

where f is an arbitrary distortion function which can be chosen to coincide with 
that of a known separable coordinate system [S] when analytical calculations are 
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wished for. We shall here make the choice f = 1 implying that the new coordintes 
are of Cartesian type. Furthermore, it is convenient to introduce two functions, 
x(6 11, t), and Y(t, VI, t), through 

Having chosen f = 1, these functions satisfy 

ax dY ax dY ---=-) 
ag au Tj=-Xf’ 

An equivalent equation for Y, say, is 

(a2/ap + a*/a$) Y= 0. CjB 

Such an equation can also be written for X but, if Y is calculated by solving (9) 
with appropriate boundary conditions, then X is determined through Eqs. (S). 

Since { and rl are of Cartesian type we set their ranges as 

-co<4< so0 (lo) 

-p<q< +l. (11) 

The lines 5 = to --+ +co (-co) are infinitely far to the right (left), and the 
obvious flow symmetry implies that 5 = 0 will always represent the y-axis. The line 
q= -/I (+ 1) is the lower (upper) boundary. A slight complication arises here with 
the coordinates (ts, qs) of the sink. We know that ts = 0 because of the symmetry 
but rls is unknown. As we shall see later, it is a function of time and must be deter- 
mined as such. 

It is then found by direct calculation that (l), (2), and (3) become 

wa5* + wad 4 = 27a 6(t) sh - ‘1.4, 

d(S, 4% t) = -$ Y,‘(L f), 

d(5, 1, t) = Y&9 fh 

where, for simplicity, the following notation has been introduced: 

We now turn to the formulation of the dynamic boundary conditions (see 
Section 2.3). A point at a boundary is defined by (lB, qB), where tB is arbitrary 
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but fixed while qB = 1 (upper boundary) or --/II (lower boundary). The velocity 
components of such a point are then, by definition of the velocity potential, 

The right-hand sides can be expressed in terms of partial derivatives with respect 
to < and v] by solving the system of equations: 

Using (6t(8), (15), and (16) one then obtains 

ay -2 
at (17) 

x- - [%]2+[1+[aV=+J2 * 
(18) 

Similar equations can be written for the X-function but such equations are 
not needed since X is determined through Y by Eqs. (8). The condition of no 
displacement at zero time yields 

y,it, 0) = 0, YJt;, 0) = 0. (19) 

Thus the moving-boundary problem presented in Section 2 is transformed into 
classical boundary value problems for Y and 4, and into an initial-value problem 
for Y,, and Yg. Using Green functions to solve the boundary-value problem defined 
by (9), (15), (16), and 

Y( + co, ‘I, t) = Y( - co, q, t) = 0, (20) 
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and using the boundary-value problem defined by (12)-(14) and 

one obtains 4 and Y as integral transforms of Y,+, and Y,. The initial value problem 
for Y,V and Y, defined by (17t(19) is in the form of two coupled eon-Iinear 
integrodifferential equations which must be solved numerically. 

4. SOLUTIONS FOR THE BOUNDARY-VALUE PROBLEMS 

The two boundary-value problems defined above can be solved with the same 
Green function. The latter can be found in Williams [lo], written as a Fourier 
series. Its sum is easily found to be 

1 cosh[C(<‘-()I-cos[C($-q)] 
G=dn cosh[C(t’-<)I-cos[C(y’+r/+2/?)] 

+e ln cosh(C~)-cosCC(rs-~)I 
2 cosh(C5)-cos[C(rlS+r+2/J)]’ 

where 

U,, =; i“” dt’ Y,(Y, t) 
sinI:C(v f P)l (261 CD cosh[C(5’-5)]-cos[C(~+~)]’ 

sin[C(l -q)] 
d5’ ygc”’ t, cosh[C(<‘-l)]-cos[C(l -q)]’ 6273 

The integrands in (26) and (27) have delta-function type singularities (at q = --/I 
for U,,,, at q = 1 for U,). These can be eliminated by partial integration before con- 
sidering the q-differentiations of U, and U, which are necessary for the evaluation 
of the right-hand sides of Eqs. (17) and ( 18). From (26), for example, one gets 
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To complete the determination of the mapping from (x, y) to (5, q), Eqs. (6) and 
(7), it is necessary to calculate X by (8). Straightforward calculations lead to 

35, vl, r)=& j-1” &’ . Y,(Y, ~1, t) sinhCC(5 - 5’11 
m smh* [ C(5 - 5’)/2] + sin’[ C(q + fl)/2] 

C 
-- j-+m d(’ . 

Y,Ct’, r, t) sinhCC(tS - 571 
271 -cc smh2[C(S-o/2] +sin2[C(1 -~)/2]’ (29) 

5. THE F~~~RDINATE OF THE SINK 

It has been noted that the <-coordinate of the sink is zero but that the q-coor- 
dinate must be calculated at each value of time (see the remarks following (11)). 
The equation defining us is ~(0, qs) = 0, i.e., by (7), (24), (26), and (27), 

YJ5’) + Y,(Y) 
cash Cc’ - cos a, cash Cg’ + cos a, I = 0, (30) 

where 

%=C(tls+P). (31) 

When Y, and Y, are known, this equation can be solved by any of the standard 
methods, preferably by one which makes use of the fact that an approximate value 
of qs is known at time t, namely the value calculated at an earlier time. Also, 

?S=O at t = 0. (32) 

6. THE MOVEMENT OF THE BOUNDARIES 

The movement of the boundaries is given by the solution to the initial-value 
problem defined by Eqs. (17)( 19). Equations (17) and (18) are nonlinear, coupled, 
integro-differential equations. In this section, critical time is defined and two 
methods of numerical solution are outlined. 

6.1. Definition of Critical Time 

Calculations break down when one or both denominators in (17) and (18) 
vanish, thus implying an infinite velocity of boundary displacement. This happens 
at a time called “critical time,” t,. Assuming that the boundaries are smooth at all 
times, except possibly at t,, the vanishing of a denominator is seen to happen at 
5: = 0, where (17) and (18) can be written 

[ 1 ar, Cw~vll~=o,,=, 
at 5=o= if w/adr=o,II=m’ 
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where m = - fl ( + 1) if f= w(g). Numerical evaluation actually shows that the 
denominator in the expression above is close to but less than one at small values of 
time and decreases to zero as time increases. When the velocity at that point of the 
boundary becomes infinite, one expects the appearance of a cusp and a discon- 
tinuous transition to a flow of quite a different type than the one assumed in the 
present model. (For infinite speeds at the boundary in similar problems see Bcken- 
don in [S].) Calculations must be stopped at a time, less than t,, when the 
denominator has become smaller than some positive number, say E. Satisfactory 
approximations for t, can be obtained by reducing the time step when the 
denominator becomes small and by choosing a small value for E. 

There is an interesting geometrical interpretation for the breakdown of the 
calculations at t,. It can be shown that the denominators in (17) and (18) are the 
values at the boundaries of the function h* appearing in the expression for the 
infinitesimal length, 

ds* = h2(dt2 + d$). 

In other words, breakdown occurs when a concentration point appears in 
(5, II) coordinates. In the case considered here two concentration points can app 
simultaneously since the denominators in (17) and (18) can vanish at the s 
time. 

6.2. Solution for Small Q (Large Critical Times) 

The following method of solution is applicable to a large class of differential 
equations [9] but, as shown below, becomes unpractical for the solution of 
the problem at hand if the rate Q becomes larger than a certain value. In this 
method, Eqs. (17) and (18) are converted into an infinite set of coupled, ordinary, 
first-order differential equations by expanding Y, and Yg in Fourier series wit 
time-dependent coefficients [9]. Thus it is first necessary to change the variable 5, 
which has an infinite range, to a variable % having a finite range. Among the likely 
t(e) formulas, the following is implied by the hyperbolic cosine in (26) and (27): 

exp( Cg) = tan(%/2), odeGz. (331 

When (33) is used to obtain, say, aY/aq at q= -j (see (17)), one gets 

ay i I c - 
ar 7i-B=!Z sine I 

n de’ 
[(sin 8 + sin %‘) a y,.lael 

o cos %-c0s 8’ 

- (sin e-sin %‘) ar,/aeq, (341 

where the Cauchy principal value must be taken and where use has been ma 
the symmetry of Y,.(e) and Y,(B) around 8 = 742 (implied by the symmetry of 



sin(2k + 1) 

8, Y,= 
O3 Bk(l) 

- c - sin(2k + 1) 8, (35) 
k=O lx+ 1 kEO 2k+ 1 

where the division by 2k + 1 is a matter of convenience and where the fact that only 
odd frequencies appear is due to the symmetry of the functions about 8 = 7cj2. 
Taking this symmetry into account and also the fact that Y,(Q) and Y,(8) vanish at 
6’ = 0 and 71 (see (20)), sine series have been chosen so as to obtain the best possible 
convergence (see Ref. [ 11 I). The trigonometric series in (35) thus represent periodic 
functions which are not only continuous but have, in addition, a first-order 
continuous derivative. This additional continuity would not have been observed by 
a cosine series. 

Now using (35) in (34), inverting the order of integration and summation, and 
carrying out those integrals that can be found in the tables, one obtains 

=C sine f [AkC~(e)-Bkc:(e)], 
2n k=O 

where 

ck’ = 
s 71 

sin 8’ cos(2k + 1) 8’ 
0 cos e 

de’ & TC sin( 2k + 1) 8. 
- cos 81 

(36) 

Similar expressions can be obtained for the other terms appearing in (17) and (18). 
The right-hand sides of (17) and (18) are thus written as functions of 8 and A, and 
B,, so that these equations can be written 

O” k,(t) . 
c - sm(2k + 1) 8 = F,(8, A,, A,, . . . . B,, B,, . ..) 

k=O 2k+ 1 

O” BkW 
c - sin(2k+ 1) S=F,(e, A,, A,, . . . . B,, B,, . ..). 

k=O 2k+ 1 

where time derivatives on the left-hand sides are indicated by dots. Calculating the 
Fourier coefficients of the functions FA and FB, one obtains an infinite set of 
equations: 

kk(t)=Gk(& A,, . ..> B,, 4, . ..I. k = 1, 2, . . . @a) 

Bk(t) = ffk(AI, A,, . . . . B,, B,, -.), k = 1, 2, . . . . (38b) 

The calculation of the Gk and Hk is best done by using an algorithm for the fast 
Fourier transform (FFT) once a decision has been reached as to the maximum 
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number of equations (38) to be used. The techniques considered by Bellman and 
Adomian [9] for the choice of a maximum value of k are not easily applicable to 
the present case where calculations for small times show that Ak and B, behave as 
l/k for large k. We have adopted a method of closure which is more general than 
the ones considered in Ref. [9], based on acceleration of convergence [12, 13-j. 
Briefly, acceleration consists in approximating the sum of an infinite series by a 
rational expression of a finite number of its first terms. This number is arbitrary and 
depends on the required accuracy. Very high accuracies can be obtained with few 
terms [12, 131, depending on how quickly the asymptotic behaviour of the kth 
term can be detected. Using acceleration of convergence on all the sums appearing 
in the problem, as in (35) and (36), it has been found that a maximum value of 8 
for k is satisfactory as long as the rate Q is less than about 0.5. There are then 16 
equations (38) to solve. These are in standard form and can be solved by any of 
known methods, although stiff solvers turn out to give the best results. Note t 
the initial conditions attached to Eqs. (38) are, according to (19), 

A#) = Ilk(O) = 0, k = I, 2, . . . . 

It must be mentioned for completeness that qS, which appears in (17) and ( 18) in 
the terms a#jaq at r~ = -/I and 1, must be provided as a function of the Ak an 
This is done by using (33) and (35) in (30). 

Knowledge of the vertical boundary displacements makes it then possible to 
calculate the horizontal boundary displacements (Eq. (29)), and the potential 
(Eq. (25)). Fast computational procedures are obtained if the sums in (35) are 
substituted in (25) and (29) and acceleration of convergence is used after inv~~ti~ 
the order of integration and summation. 

It has been mentioned that this solution is valid as long as Q is less than about 
0.5. Above this rate, errors due to acceleration become large and the values of 
critical time start behaving erratically when plotted against &. The reason for this is 
simply understood by referring to Fig. 2. 

-2 -1 0 i 

FIG. 2. Flow patterns for $ = p = 1 and (a) Q = 0.1, (b) Q = 1.0. Critical times are 14.0 in [a) and 
0.235 in (b). Boundaries are drawn at time intervals of O.lt,. 
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Figure 2a shows the movement of the boundaries in the completely symmetric 
case $ = /3 = 1 and for a rate Q = 0.1. Figure 2b corresponds to a rate of 1.0 (it has 
been produced with the second method, see Section 6.3). It can be seen (Fig. 2a) 
that the boundaries are relatively flat for the smallest rate, a peak developing inside 
a short time-interval just before critical time while, for the largest rate, the peak 
forms early in time (Fig. 2b). A sharp peak at a boundary implies that high frequen- 
cies become important in the Fourier expansions (35) so that, even using 
acceleration, one cannot avoid increasing the number of Eqs. (38) and computing- 
time becomes prohibitively large. One must then turn to the solution outlined 
below. 

6.3. Solution for Large Q (Small Critical Times) 

The second method for solving (17) and (18) is valid for large Q and is based on 
the observation that for large rates critical time becomes less than one. In this 
method the solution is taken to be the first iteration, given a zeroth approximation 
which is of a form suggested by the solution for t -+ 0. Setting t = 0 in (17) and (18) 
and taking Eqs. (19) and (32) into account one obtains 

ay [ 1 w sin( Cfi) 
at r=O = cQ cosh(Cl) - cos(C/?)’ 

c 1 ar, = -CQ 
sin( C/I) 

at t=O cosh( C<) + cos( CD) 

(39) 

(40) 

so that, for small times at least, Y, and Yg can be approximated by t times the 
right-hand side of, respectively, (39) and (40). We now assume a zeroth 
approximation of the form 

Yw(5, t) = CQydt) cosh(;; ycos tc > 
S 

Y&5 t) = -CQy,W cosh(;; ycos cI 2 
S 

(42) 

where yw and yg are two unknown functions of time and as is the parameter defined 
by Eqs. (30) and (31). When (41) and (42) are used in (26) and (27) one finds that 
the integrations can be performed by hand so that the right-hand sides of (17) and 
(18) can be expressed in terms of elementary functions of 5, qs, and y,,, and yg. Now 
using (41) and (42) in reverse so as to express the y’s in terms of the Y’s, one 
arrives at 

Ra t) = ffw(5, ?s, yw, y,,, (43) 

Qr, t) = fqt, ?s, yw Yg), (4.4) 

where time-differentiation is indicated by a dot. These equations can now be solved 
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by known methods for a given <. Note that Eq. (30) (where (41) and (42) are used, 
the integration done by hand, and the y’s expressed in terms of the Y’s) must 
taken into’account so that qs is an implicit function of 5, Y,, and Y,. 

When Y, and Yg are calculated for a selected array of <-values, one may th 
proceed with the calculation of the horizontal boundary displacements and of 
potential by numerical integration of Eqs. (25) and (29). We have performed 
integration by first fitting splines through the calculated values of Y,. and Y, and 
then using known quadrature methods. 

6.4. Joining the Two Solutions 

The two methods give, with some qualifications, the same solution for rj = p = 1 
and Q in the range 0.4 to 0.5. The practical significance of the case I/I = /? = 1 will be 
discussed in Section 7; it is sufficient for the present discussion to remember that, 
due to the symmetry, Y, = - Y,. Here we shall compare the methods for $ = p = 1 
and Q = 0.45. 

Critical time is 0.7 when acceleration is used while the iteration method gives 
0.74. (See also Fig. 4 where differences in critical time are shown for 0.4 d Q < 0.5.) 
When, for a given t between 0 and 0.695, the curve Y,(B, t) versus 6, given by 
acceleration, is compared to the corresponding curve given by iteration one finds 
deviations which are roughly independent of 0 but which increase with time, from 0 
at t = 0 to about 4 % at t = 0.695. These deviations are shown in Fig. 3 for l3 = n/2. 

FIG. 3. Y,(n/2, t) vs t for 3 = fl= 1 and Q = 0.45. The full line is obtained by acceleration, the 
broken line by iteration. 

581/78/l-16 
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The full and broken lines show Y,,,(7c/2, t) vs time for the accelerated solution and 
the iterated solution, respectively. 

Assuming that, for all practical purposes, one can go from the acceleration 
method to the iteration method when the rate becomes larger than about 0.45, we 
now turn to the questions which were formulated in the Introduction. 

7. RESULTS AND CONCLUSIONS 

It is natural to look at critical time as a function of Q, +, and /I: 

t, = t,(Q> $3 D). 

The product Qt, is the total amount of fluid removed, from time zero until t,, 
and it is important to be able to predict the position of the well (in other words, the 
value of j3) which gives the largest value of t, for a given rate Q and given fluid 
properties ($). The full lines in Fig. 4 are the plot of t, vs Q for JI = j3 = 1, obtained 
by acceleration (line to the left) and iteration (line to the right). The particular 
significance of the function t,(Q, 1, 1) is to be found in the following properties of 
Eqs. (17) and (18). First, 

t,(Q, ti, PI d t,(Q, 1, 1). (45) 

Second, given Q and II/ (which is the usual situation), one can find one (and only 
one) value of /3 such that the equality in (45) holds. Finally, for such values of Q, $, 
and p, both boundaries develop a cusp at the critical time. We have not attempted 
to prove these statements mathematically, but have verified that they hold on a 
large number of cases, letting the parameters vary inside their likely physical ranges. 

An example is shown by the broken line in Fig. 4 which is t,(Q, I, 1) vs Q. For all 
points on this curve the cusp appears at the lower boundary, as shown on Fig. 5a 
which correspond to point A (Q = 0.3, $ = 0.5, /I = 1) in Fig. 4. By increasing the 
value of /3 to 1.1 (point B, and corresponding flow pattern of Fig. 5b) one increases 
the critical time. The value /I = 1.333 is the one that makes the equality in (45) hold. 
This gives point C in Fig. 4 and the corresponding flow pattern with a cusp at each 
boundary is shown in Fig. 5c. An increase of the value of /I beyond the optimum 
(1.333) will then bring about a decrease in the critical time and a flow pattern 
where the cusp appears only at the upper boundary. The present example also 
shows that it is important to find the correct value of /3 as long as the rate Q is less 
than about 1. For larger rates the optimum value of /I does not significantly 
increase t,. This is confirmed by calculations with other values of +. 

Since critical time increases as the rate decreases (Fig. 4), is it possible to find, for 
given $ and p, a rate Q, such that, for all Q $ Q,, the boundaries tend 
asymptotically to a static limit? We shall show that there is evidence against such a 
static limit by an argument based on perturbation theory. To simplify, we assume 
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FIG. 4. Critical time vs rate: + = /3 = 1 for the full lines; $ = 0.5, /S = 1 for the broken line. At 
,4:*=0.5,~=1.0;atB:~=0.5,~=1.1;atC:*=0.5,~=1.333. 

$ =/I = 1, then look for a time-independent solution to Eq. (17) where the left- 
hand side is set equal to zero, in the form of an expansion, 

YEA@= f enwn(o 
n=l 

The numerator on the right-hand side of (17) can then be written as an expansion 
in powers of Q. Equating all coefficients to zero one gets a recurrence scheme for 
the w,. The equation for wi is 

1 x - 
s 

do’ dw, sin 8’ 
n 0 de’ cos 8--cos tl’= -” 

where a principal value integration is implied. This equation has no solution 
because integration of the right-hand side between zero and z does not give zero 
[14]. There is a more general proof of the non-existence of a static limit to the 
present problem [15] but it is outside the scope of this paper. 

In industrial applications the potential (which is related to the pressure by 
Eq. (Al) of the Appendix) is measured at the well and compared to theoretical 
predictions. In the model presented in Section 2 the sink is a point, which implies a 
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FIG. 5. Variation of flow pattern with sink position: + = 0.5 and Q = 0.3. In case (a) p = 1; case (b) 
/?= 1.1, and case (c) /3 = 1.333. Figures a, b, and c correspond to points A, B, and C of Fig. 4, respec- 
tively. Boundaries are drawn at time intervals of O.lt,. 

well of zero radius and consequently an infinite potential at the well. This dificulty 
can be removed by calculating the potential at a small distance r, from the sink, 
then subtracting the value of the potential at r, and zero time. It can be shown 
that, because of the assumption of incompressibility (see Section 2), the potential 
which one thus subtracts is the value that the potential would take after infinite 
time if the boundaries were fixed and if compressibility was taken into account. This 
“renormalized” potential is shown in Fig. 6, plotted versus time for the case 
$ = p = 1 and a range of Q-values. It is noteworthy that the potential can increase 
at the well for large rates. 

In view of the high velocities attained by the boundaries near critical time, the 
question arises as to the validity of the present model since, as stated in Section 2, it 
is assumed that gas and water are in static equilibrium. This is equivalent to asking 
how high the velocities in these fluids can become before the assumption of static 
equilibrium breaks down. The question cannot be answered in general terms and 
must be considered in each case, together with information on the properties of the 
fluids in presence (densities, viscosities, relative permeabilities). In addition, one 
should consider the possibility of fingering-instability where a “linger” might 
develop as soon as a boundary has acquired a pronounced bulge. Such con- 
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FIG. 6. Renormalized potential near the sink vs time for t/j = p = 1 and four different rates. 
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siderations fail outside the scope of this paper but it is probable that, at least for 
small rates (Q < 0.4), the model is realistic for a large range of fluid properties since 
the boundaries are then flat and move slowly until very skortly before critical time. 

APPENDIX: 
PHYSICAL QUANTITIES AND THEIR DIMENSIONLESS COUNTERPARTS 

Only dimensionless quantities have been used in the main text and, as often as 
possible, without sub or superscripts. The relations between physical and dimen- 
sionless quantities are given below, where a star is added as a superscript to tke 
symbols representing the physical coordinates and the physical time, rate, and 
potential. The corresponding symbols for the undimensional variables are left 
unstarred. 

The nomenclature is as follows (SI units are indicated): 

a = distance between sink and upper boundary at zero time (m) 
b = distance between sink and lower boundary at zero time (m) 
g = acceleration due to gravity (m.ss’) 
K= absolute permeability of the porous medium (m’) 

Q* = rate of fluid withdrawal by unit length of well (m2.s -‘) 
p = pressure (Pa) 

t* = time (s) 
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x*, y* = coordinates (m) 
p = oil viscosity (Pa.s) 
p = mass per unit volume; 

always with an index g, O, or w (kg.me3) 
cp = porosity. 

The velocity potential is defined as 
$b* =p +gp,y* --p(x* = co, y* = 0). (AlI 

The relations between the physical quantities and their dimensionless counter- 
parts used in the main text are 

qj= d* 
agh -P&J’ 

t = MPO - P,) t* 
wcp ’ 

Q= ’ 
2~Jkh - P,) 

Q*. 
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